
Computer and Telecommunication Engineering 2024, 2(3), 2504
https://doi.org/10.54517/cte2504

1

Article

A new modification to the A* path-finding algorithm to improve its space
and time performance

Aaron Rasheed Rababaah

College of Engineering and Applied Sciences, American University of Kuwait, Salmiya 13034, Kuwait; arababaah@auk.edu.kw

Abstract: We propose a new modification to the A* algorithm named AA* that
significantly improves space and time complexities. In AA*’s forward pass, the node
sets (open and closed) are not used, and only the local node neighborhood is saved to
take the next move decision. AA* needs a backward pass to bridge and correct gaps
and bad decisions made in the forward pass. The work of the backward pass is far less
than that of the forward pass, as most of the task has been done. It is shown via
empirical experimental work that our proposed AA* algorithm is superior to the
classical A* algorithm in the typical three metrics: running time, number of probed
nodes, and length of path. Furthermore, our experimental work showed that AA* is
suboptimal in terms of length of path compared to the original Dijkstra’s algorithm
with an accuracy of 96.95%.

Keywords: A* path-finding algorithm; new modification to A*; mobile robotics; graph

algorithms; grid-based path finding

1. Introduction

Path planning algorithm (PPA) is an essential operation in a number of real-world
applications, including games, mobile robotics, unmanned aerial vehicles (UAVs),
robotic arms, geographical maps, computer networks, sensor networks, resource
allocation planning, smart vehicles, etc. [1,2]. The primary objective of PPA is to find
the optimal path between source and destination nodes in an environment of nodes
represented as a graph. Despite the number of algorithms of PPA that exist in the
literature, most of them stem from Dijkstra’s original algorithm [3]. Although
Dijkstra’s algorithm guarantees a globally optimal shortest distance between a source
and a destination, it can be intensive in space and time. PPA has been studied for
decades, and many solutions, including Dijkstra’s, have been proposed. Examples of
these solutions include classical Dijkstra’s algorithm, A* path finding, ant colony,
support vector machines, genetic algorithms, rapid random trees (RRT), local GPS,
fuzzy logic, artificial potential fields, image processing, and sensor networks [2,4–15].

A typical environment of a path planning problem is depicted in Figure 1. It can
be observed that the environment consists of a number of elements. It includes an agent
that may be a robot, a vehicle, a drone, etc. This agent exists in this environment and
is required to navigate through it from a source location to a destination location. This
traversal is due to tasks that need to be accomplished by the agent in response to an
event, command, etc. Also, the environment includes a set of obstacles that blocks the
way of the agent. In our context, these obstacles are assumed to be static. The starting

CITATION
Rababaah AR. A new modification to
the A* path-finding algorithm to
improve its space and time
performance. Computer and
Telecommunication Engineering.
2024; 2(3): 2504.
https://doi.org/10.54517/cte2504

ARTICLE INFO
Received: 9 June 2024
Accepted: 13 September 2024
Available online: 26 September 2024

COPYRIGHT

Copyright © 2024 by author(s).
Computer and Telecommunication
Engineering is published by Asia
Pacific Academy of Science Pte. Ltd.
This work is licensed under the
Creative Commons Attribution (CC
BY) license.
https://creativecommons.org/licenses/
by/4.0/

Computer and Telecommunication Engineering 2024, 2(3), 2504

2

and the target locations are known to the agent. Finally, the entire map of the
environment is known to the agent.

Figure 1. Typical environment of path planning problem.

Since the invention of Dijkstra’s algorithm, many attempts have been proposed
to improve its performance. The most popular algorithm that was proposed to improve
the time and space complexity of Dijkstra’s algorithm is the A* algorithm [16]. The
improvement that A* made on the original Dijkstra’s algorithm is the addition of a
heuristic function that significantly pruned the useless paths to consider in the search
space. In the technical background, there will be a more detailed and concrete
discussion on how these algorithms work and what our proposed improvement is.

2. Closely related literature

The work presented a proposed method to improve the efficiency of the A*
algorithm based on topological maps [17]. The paper used 2D lidar to construct the
map of the environment. Furthermore, a depth camera was used to detect objects in
the scene. The authors reported that their experimental work showed that the proposed
method is reliable and more efficient than the original A* algorithm. A path planning
technique for unmanned ships was presented by [15]. The authors assumed a known
map of the environment. The authors compared the classical Dijkstra algorithm with
the ant colony algorithm and concluded that their method was able to improve the
efficiency of the path planning problem. The work of [7]. proposed a method to
improve the A* planning algorithm for robot path planning. The authors provided a
simulated experimental work that demonstrated that their proposed method is effective
to produce better results than the classical A* algorithm. An improved version of the
A* algorithm was used in the work of [14] for service robot path planning in
restaurants. The authors reported that their method was able to avoid crowded channels
and improved the effectiveness of the classical A* algorithm. Genetic algorithms (GA)
were used in the work of [8] to improve the efficiency of the A* algorithm for UAVs.
The authors used simulated experiments to validate their proposed method and found
that it is reliable and efficient. An improved version of A* based on the dynamic
window approach was proposed by [18]. The proposed method eliminated redundant
path nodes, and the simulated experimental work demonstrated its effectiveness and

Computer and Telecommunication Engineering 2024, 2(3), 2504

3

efficiency. A smart wheelchair system was enabled with a path finding algorithm
based on the A* algorithm by [19]. The authors validated the proposed system using
a simulated experimental work and found that the method is reliable. The work of [20]
provided a solution for the deadlock problem in the A* algorithm when the graph is
disconnected. The authors used picture matching and the A* to detect a deadlock
scenario. An image processing technique for robot path finding was proposed [5]. The
authors reported that their method is more effective and more efficient than current
methods, as it exploits the visibility of the entire map rather than physically probing
possible paths and backtracking. The work in [21] argued that many path finding
algorithms are not sufficient for real-world scenarios of traffic road maps. The authors
proposed more restrictions such as time duration, intersections, and lane changes. It
was reported that via simulation experimental work, the proposed method was
effective and reliable. A depth-first search and sub-region path planning method was
introduced by [22]. The main improvement of the new method was to reduce the
excessive number of turns in the paths of agricultural robots. The authors used
simulated experimental work to validate their proposed method and found it to be
effective. The work in [23] proposed an improvement on the A* algorithm from
different aspects, including a bi-directional search and turn smoothing. The simulated
and real-world experimental work showed that the proposed method is effective and
efficient.

3. Technical background

In this section, the theory and fundamentals of relevant concepts and algorithms
are presented. These include graphs, Dijkstra’s algorithm, the A* algorithm, and our
proposed modified A* algorithm.

The graph modeling of the problem of path finding is depicted in Figure 2. It can
be observed that the graph is an undirected (bidirectional) graph and consists of a set
of nodes, weighted undirected edges, a source node, and a destination node. Although
graphs can be directed, our investigation will consider the less restrictive set of
undirected graphs. This is because undirected graphs represent real-world scenarios
more closely.

Figure 2. Graph modeling of the path finding algorithm.

A

B

C

D E

F

G

H

w1

w2

w3

w4
w5

w6
w7

w8

w9

w12

w10

w11

Source node Destination node

Computer and Telecommunication Engineering 2024, 2(3), 2504

4

A graph can be mathematically defined as a finite set of vertexes, a finite set of
edges, each of which has a weight, and an incidence function that defines the
connectivity among all vertexes. This concept is expressed in Equation (1).

𝐺 = (𝑉, 𝐸, 𝑊) (1)

3.1. Dijkstra shortest path algorithm

A path in a graph is defined as a finite sequence of distinct vertexes connecting a
source vertex to a destination vertex [24]. This definition is given in Equation (2).

𝑃(𝑣ଵ, 𝑣) = (𝑣ଵ, 𝑣ଶ, . . . , 𝑣ିଵ, 𝑣) (2)

In a given graph, there are a finite number of possible paths from a source to a
destination. The shortest path finding problem is interested in searching for the shortest
path in this finite set of paths. Dijkstra’s algorithm defines a cost function g(x) based
on the weight of the edge. This cost function is the basis for finding the next vertex to
expand locally and eventually finding the best sequence of edges that forms the
optimal path. The A* algorithm adds a heuristic function that improves both time and
space complexities of the original Dijkstra’s algorithm. The cost function of the A*
algorithm is defined in Equation (3).

𝑓(𝑣) = 𝑔(𝑣) + ℎ(𝑣) (3)

where:

 f(vi): the overall cost function.

 g(vi): the cumulative weight from source to vi vertex.

 h(vi): the heuristic cost from vi vertex to destination.
Typical heuristic functions used in A* include: Euclidean distance, Manhattan

distance and diagonal distance defined in Equations (4)–(6) respectively.

𝑑௨(𝑣ଵ, 𝑣ଶ) = ට(𝑣௫
ଵ − 𝑣௫

ଶ)ଶ + (𝑣௬
ଵ − 𝑣௬

ଶ)ଶ (4)

𝑑(𝑣ଵ, 𝑣ଶ) = |𝑣௫
ଵ − 𝑣௫

ଶ| + |𝑣௬
ଵ − 𝑣௬

ଶ| (5)

𝑑ௗ(𝑣ଵ, 𝑣ଶ) = max (|𝑣௫
ଵ − 𝑣௫

ଶ|, |𝑣௬
ଵ − 𝑣௬

ଶ|) (6)

In Equations (4)–(6), v1 is the current vertex and v2 is the destination vertex.
Furthermore, in all cases, it is assumed that moving from one cell to another costs the
same in any direction. This is the case for 2D grids, which we assume in our
investigation. Equation (3) can be generalized to account for weighted heuristic cost.
As it stands, the weight of g(x) and h(x) is assumed to have the same influence. If it is
desirable, this influence may be weighted differently and will impact the effectiveness
and efficiency of the outcomes of the A* algorithm. Therefore, Equitation (7)
expresses this general concept of weighted cost function.

𝑓(𝑣) = 𝑔(𝑣) + (1 −)ℎ(𝑣) (7)

where:

 : a weight factor [0, 1]

Computer and Telecommunication Engineering 2024, 2(3), 2504

5

According to Equation (7), if a = 0, A* goes back to Dijkstra’s original algorithm.
On the other hand, if a = 1, A* completely ignores the g(x) term and uses only the h(x)
term. In the first scenario, A* is very slow but accurate, and in the second scenario,
A* is very fast but inaccurate. We will show an empirical investigation of these
scenarios in the experimental work section.

The graph in Figure 2 represents the general case of any path finding
environment. A special common case uses a grid-based layout. In this grid, the vertex
space is broken down into cells where each cell is surrounded by an 8-cell
neighborhood as shown in Figure 3. We label these neighbors as the set of the possible
movement directions of (N “north”, NE “north-east”, E “east”, SE “south-east”, S
“south”, SW “south-west”, W “west”, NW “north-west”).

Figure 3. Neighborhood of a current cell “x” in a grid-based path finding
environment.

A typical grid-based environment is shown in Figure 4. It is to be observed that
color codes are significant in this map, as every color indicates the type of cell, such
as ground, obstacle, open, closed, path, etc.

Figure 4. Typical grid-based environment for path finding algorithm.

Computer and Telecommunication Engineering 2024, 2(3), 2504

6

Since the original Dijkstra’s and the A* algorithms are very similar and they have
only one difference, that is, the heuristic function h(x), we provide one flowchart for
A* that includes Dijkstra’s as well. The flowchart is depicted in Figure 5.

Figure 5. The flowchart of Dijkstra’s algorithm for shortest path finding.

3.2. Space and time complexity

Our main focus in this study is to improve time and space complexities of the A*
algorithm. As explained earlier, A* already improved the original Dijkstra’s algorithm
by adding a heuristic function to eliminate useless path explorations. The upper bound
of Dijkstra’s algorithm is given in Equation (8), assuming the use of a min-heap data
structure.

𝑇(𝐸, 𝑉) = 𝑂((𝐸 + 𝑉)𝑙𝑜𝑔𝑉) (8)

where:

 T: time complexity.

 E: number of edges in the graph.

 V: number of vertexes in the graph.
The complexity of A* algorithm is given in Equation (9).

Computer and Telecommunication Engineering 2024, 2(3), 2504

7

𝑇(𝐸, 𝑉) = 𝑂(𝑏ௗ) (9)

where:

 b: number of expanded vertexes at each node.

 d: number of vertexes in the found optimal path.
We observe that there is an opportunity to improve both space and time

complexities of the A* algorithm. For the space complexity, we do not use open and
closed sets to store the current state of the algorithm. Instead, we sacrifice some
accuracy for time efficiency. We will prove empirically that this sacrifice is not
significant in the experimental work. On the other hand, we gain significantly on the
running time efficiency.

Our proposed algorithm consists of two passes, forward and backward passes. In
the forward pass we concentrate on reaching the distention as fast as possible and using
the number of nodes as low as possible. We recognize that, in the forward pass, the
algorithm makes bad decisions and/or has a broken path sometimes. Therefore, we
devised a backward pass to fix these two problems. The pseudocode of the two passes
is given in Algorithms 1 and 2, respectively.

Algorithm 1 Pseudo code of the forward pass of the proposed algorithm

1: AA*Forward(map, src, dst)

2: while (src.loc NE dst.loc)

3: lst_nbr = get_neighbors(src_loc)

4: for_each(cell in lst_nbr)

5: if cell EQ obstacle

6: g(x) =

7: Else

8: if cell {NW, NE, SW, SE}

9: g(x) = g(x) + 1.4142

10: End

11: End

12: End

13: h(x) = Euclidian(x, dst)

14: f(x) = g(x) + h(x)

15: min_x = min(lst_nbr, f(x))

16: if |min_x| > 1

17: x = min(min_x, g(x))

18: Else

19: x = min_x[1]

20: End

21: map(x) = src_color

22: map(src_color) = path_color

23: AA*Backward(map, dst, src)

Computer and Telecommunication Engineering 2024, 2(3), 2504

8

Algorithm 2 Pseudo code of the backward pass of the proposed algorithm

1: AA*Backward (map, src, dst)

2: while (src.loc NE dst.loc)

3: lst_nbr = get_neighbors(src_loc)

4: for_each(cell in lst_nbr)

5: if cell EQ obstacle OR has new_path_color

6: g(x) =

7 Else

8 if cell {NW, NE, SW, SE}

9: g(x) = g(x) + 1.4142

10: Else

11: g(x) = g(x) + 1

12: End

13: If (cell == path_color)

14: g(x) = 0.1 * g(x)

15: Else

16: g(x) = 0.5 * g(x)

17: End

18: h(x) = Euclidian(x, dst)

19: f(x) = g(x) + h(x)

20: End

21: min_x = min(lst, f(x))

22: if |min_x| > 1

23: x = min(min_x, g(x))

24: Else

25: x = min_x[1]

26: End

27: map(x) = new_path_color

To demonstrate how the AA* algorithm works, show the forward and backward
passes in Figure 6. Looking carefully at the forward pass, we can observe that AA*
reached the target location but with a broken path, as the number of red-highlighted
pieces of the path is visible. This is the role of the forward pass. The backward pass
kicks in right after the forward pass has finished at the destination node. The role of
the backward pass is to bridge these pieces together, keeping in mind the same
heuristic used in the forward pass. The work of the backward pass is easier since most
of the work has been done. In Lines 4–15 of the Backward pass, it gives preference to
the already marked path cells in the Forward pass. Furthermore, it favors the explored
cells over ground cells in case the cell was not already marked. Also, the backward
pass forbids following a cell if it is an obstacle or already bridged.

Computer and Telecommunication Engineering 2024, 2(3), 2504

9

(a) (b)

Figure 6. (a) Sample of AA*Forward pass; (b) AA*Backward pass.

4. Experimental work

In this section, we present a simulator that we created to conduct our experiments,
results and observations on the experiments and a discussion on the results.

4.1. Simulator

(a) (b)

Figure 7. Sample of (a) simple environment; (b) complex environment.

To be able to conduct our experimental work, we created a 2D simulator using
[25]. The simulator was effective and helpful to experiment with different parameters

Computer and Telecommunication Engineering 2024, 2(3), 2504

10

and visualize the details of path finding algorithms, namely Dijkstra’s, A*, and AA*.
A sample view of the simulator can be seen in Figure 4, and it will be shown in several
other figures below in the experiments subsection. Our simulator is different from
others in the literature because it can automatically generate an environment with
random shapes of obstacles that resembles real-world structures or buildings. The
number and size of these obstacles can be set by the user so the user may test simple
to challenging environments. An example of the two scenarios is shown in Figure 7.
Other simulation environments can be found in the work of [26,27].

4.2. Experiments

Our experiments were performed in two stages. The first stage addressed

Equation (7) as the weight factor was graduated between 0–1 in 0.01 increments

using 5 different environments shown in Figure 8.

(a) (b) (c) (d)

Figure 8. Used environments in stage 1 of the experimental work.

In each experiment we performed, three performance metrics were measured as
follows: execution time of the algorithm, number of probed cells, and length of the
found path. Figures 9–13 show the results of 500 experiments using 5 different
complex environments shown earlier in Figure 8.

(a) (b) (c)

Figure 9. Experimental results of 1st environment: running time, number of probed cells and length of found path.

Computer and Telecommunication Engineering 2024, 2(3), 2504

11

(a) (b) (c)

Figure 10. Experimental results of 2st environment: running time, number of probed cells and length of found path.

(a) (b) (c)

Figure 11. Experimental results of 3st environment: running time, number of probed cells and length of found path.

(a) (b) (c)

Figure 12. Experimental results of 4st environment: running time, number of probed cells and length of found path.

Computer and Telecommunication Engineering 2024, 2(3), 2504

12

(a) (b) (c)

Figure 13. Experimental results of 5st environment: running time, number of probed cells and length of found path.

The second stage of our experimental work addressed our newly proposed AA*
algorithm, which improves the performance of the A* algorithm. We conducted 500
experiments to investigate the performance of our AA* compared to A*. Figures 14–
17 show all the results of the aforementioned metrics, and Tables 1 and 2 aggregate
these results as the mean and the standard deviation for more convenient comparison.

Furthermore, the AA* algorithm was tested using challenging environments by
simulating 2500 experiments to see the success/failure rate. A sample experiment is
shown in Figure 12, and the results of all 2500 experiences are plotted in Figure 14.
The results are further discussed in the next section of the discussion of results.

Figure 14. Testing AA* for success/failure in challenging environments: 0 = success, 1 = failure.

Computer and Telecommunication Engineering 2024, 2(3), 2504

13

Figure 15. A*0, A*1 and AA* compared based on running time.

Figure 16. A*0, A*1 and AA* compared based on number of probed cells.

Figure 17. A*0, A*1 and AA* compared based on length of path.

Lo
g1

0(
Ru

nn
in

g
tim

e)

Computer and Telecommunication Engineering 2024, 2(3), 2504

14

Table 1. Summary of mean results in Figures 14–16.

Algorithm Running time (sec) Number of probed cells (each) Length of path (each)

A*0 7.2230 8448 48

A*1 0.4200 1339 52

AA* 0.0016 1059 49

Table 2. Summary of standard deviation results in Figures 14–16.

Algorithm Running time (sec) Number of probed cells (each) Length of path (each)

A*0 3.058 3055.8 13.89

A*1 0.406 688.5 18.91

AA* 0.003 1079.6 19.00

4.3. Discussion of results

In this section, we discuss our observations on the results of all conducted
experimental work and attempt to explain our findings.
1) In the weighted cost A* experiments, all results are consistent with our

expectations. This can be seen in Figures 9–13.
2) For the A* runtime results, all results in Figures 9–13 showed that running time

increases by increasing the value of a.
3) For the A* number of cells results, all results in Figures 9–13 showed that the

number of probed cells increases by increasing the value of a.
4) For the A* length of path results, all results in Figures 9–13 showed that the

length of the path decreases by increasing the value of a.
5) The observation in 4 indicates that although Dijkstra’s algorithm (A*0) is

inefficient in terms of running time and number of probed cells, it always
produces the shortest path.

6) In Table 1, the mean summary of Figures 9–13 indicates that our proposed
algorithm AA* is superior in running time as it scored a mean running time of
0.0016 sec, which is 262.5% faster than A*.

7) In Table 1, the mean summary of Figures 9–13 indicates that our proposed
algorithm AA* is superior in number of probed cells, as it scored a mean number
of probed cells of 1059 cells, which is 26.44% fewer probed cells than A*.

8) In Table 1, the mean summary of Figures 9–13 indicates that our proposed
algorithm AA* is superior in length of path, as it scored a mean length of path of
1059 cells, which is 6.12% fewer cells in the path than A*. Furthermore, this
metric indicates that our AA* algorithm is suboptimal compared to the A*0
(original Dijkstra) as the length of the path is longer than the optimal found in
A*0.

9) In Table 1, the standard deviation summary of Figures 9–13 indicates that our
proposed algorithm AA* is the most stable in running time, as it has the lowest
scatter compared to A*0 and A*1. In fact, the STD of AA* is 135.33% better
than that of A*.

10) Our experimental work provides empirical evidence that the proposed algorithm
AA* is effective by achieving a sub-optimal path compared to A*0 but better
than the A*1 algorithm. Furthermore, besides demonstrating a competitive length

Computer and Telecommunication Engineering 2024, 2(3), 2504

15

of path, the experimental work provided evidence that our algorithm is superior
in running time as well.

11) According to the histogram in Figure 18a, our calculations showed that the A*1
algorithm has a length of path accuracy of 91.19% compared to the optimal path
of the original Dijkstra’s A*0 algorithm.

12) According to the histogram in Figure 18b, our calculations showed that the AA*
algorithm has a length of path accuracy of 96.95% compared to the optimal path
of the original Dijkstra’s A*0 algorithm.

13) It is to be reported that we observed that our proposed algorithm occasionally
fails to find a path in very complex obstacle settings while A*0 and A*1 never
fail. That is the only disadvantage we could report based on our extensive
experimental validation. An example of this scenario is demonstrated in Figure
19.

(a) (b)

Figure 18. Length of path ration comparison. (a) A*0/A*1; (b) A*0/AA*.

Figure 19. Example of occasional failure of the AA* algorithm in a very complex
environment.

Computer and Telecommunication Engineering 2024, 2(3), 2504

16

14) Further investigation of point# 13 above, Figure 14 shows extensive testing of
this test using 2500 experiments with various challenging environments as shown
Figure 19 and the results showed that the failure rate was 21/2500 = 0.0084 =
0.084%. Therefore, the success rate was 99.16% which undeniably remarkable.

5. Conclusion

We have presented a new proposed modification to the A* path finding
algorithm, and we have demonstrated the effectiveness and efficiency. The new
algorithm is named AA*. Two passes are needed to accomplish AA* objectives. In
the forward pass, we employ the strategy of A* without the space and effort spent on
the two traditional sets (open and closed) needed to maintain the state of the A*
algorithm. The AA* algorithm, by not maintaining the state, suffers some bad
decisions and broken paths. These problems are solved in the backward pass. The role
of the backward pass is to bridge the broken pieces of the generated, possibly
incomplete path and fix the bad decisions made in the forward pass. To validate our
proposed modification, a simulator was created that turned out to be effective and
helpful for this domain. A total of 500 simulated experiments were conducted, and
their results showed that the new algorithm AA* is superior to the A* algorithm in the
three typical metrics of running time, number of probed cells, and length of path with
an accuracy of 96.95% compared to the optimal path of the original Dijkstra’s
algorithm. Furthermore, we ran another 500 simulated experiments to investigate the
influence of the weight factor of the heuristic function and reported interesting results
and observations. One minor drawback of our proposed algorithm is the occasional
failure to find the path in a very complex setting of obstacles, but this finding was
verified to be insignificant as the success rate was outstanding at 99.16%.

Conflict of interest: The author declares no conflict of interest.

References

1. Rababaah H, Shirkhodaie A. Guard Duty Alarming Technique (GDAT): A Novel Scheduling Approach for Target-tracking

in Large-scale Distributed Sensor Networks. In: Proceedings of 2007 IEEE International Conference on System of Systems

Engineering; 16–18 April 2007; San Antonio, USA. pp. 1–6.

2. Rababaah AR. Sensor networks simulation framework for target tracking applications: SN-SiFTTA. International Journal of

Web Engineering and Technology. 2021; 16(2): 113. doi: 10.1504/ijwet.2021.117767

3. Dijkstra EW. A note on two problems in connexion with graphs. Numerische Mathematik. 1959; 1(1): 269–271. doi:

10.1007/bf01386390

4. Afakh ML, Masudi MI, Ardilla F, et al. Bicycle Path Planning on Omnidirectional Mobile Robot Using Fuzzy Logic

Controller. In: Proceedings of 2018 10th International Conference on Information Technology and Electrical Engineering

(ICITEE); Bali, Indonesia. pp. 237–241.

5. Ambeskar A, Turkar V, Bondre A, et al. Path finding robot using image processing. In: Proceedings of 2016 International

Conference on Inventive Computation Technologies (ICICT). pp. 1–6.

6. Chen J, Ye F, Jiang T. Path planning under obstacle-avoidance constraints based on ant colony optimization algorithm. In:

Proceedings of 2017 IEEE 17th International Conference on Communication Technology (ICCT); 27–30 October 2017;

Chengdu, China. pp. 1434–1438.

7. Ju C, Luo Q, Yan X. Path Planning Using an Improved A-star Algorithm. In: Proceedings of 2020 11th International

Conference on Prognostics and System Health Management (PHM-2020 Jinan); 23–25 October 2020; Jinan, China. pp. 23–

26.

Computer and Telecommunication Engineering 2024, 2(3), 2504

17

8. Ma N, Cao Y, Wang X, et al. A Fast path re-planning method for UAV based on improved A* algorithm. In: Proceedings of

2020 3rd International Conference on Unmanned Systems (ICUS); Harbin, China. pp. 462–467.

9. Qiao S, Zheng K, Wang G. A Path Planning Method for Autonomous Ships Based on SVM. In: Proceedings of 2020

Chinese Control and Decision Conference (CCDC); 22–24 August 2020; Hefei, China. pp. 3068–3072.

10. Rababaah A, Kuscu E, Shirkhodaie A. Indoor Mobile Robot Localization Using IPS Cricket Technology. Journal of Global

Information Technology (JGIT). 2014; 9(1): 18–23.

11. Shen Z, Hao Y, Li K. Application research of an Adaptive Genetic Algorithms based on information entropy in path

planning. In: Proceedings of the 2010 IEEE International Conference on Information and Automation; 20–23 June 2010;

Harbin, China. pp. 2013–2016.

12. Szczepanski R, Tarczewski T, Erwinski K. Energy Efficient Local Path Planning Algorithm Based on Predictive Artificial

Potential Field. IEEE Access. 2022; 10: 39729–39742. doi: 10.1109/access.2022.3166632

13. Tusi Y, Chung HY. Using ABC and RRT algorithms to improve mobile robot path planning with danger degree. In:

Proceedings of 2016 Fifth International Conference on Future Generation Communication Technologies (FGCT); 17–19

August 2016; London, UK. pp. 21–26.

14. Yang R, Cheng L. Path Planning of Restaurant Service Robot Based on A-star Algorithms with Updated Weights. In:

Proceedings of 2019 12th International Symposium on Computational Intelligence and Design (ISCID); Hangzhou, China.

pp. 292–295.
15. Zhu Z, Li L, Wu W, et al. Application of improved Dijkstra algorithm in intelligent ship path planning. In: Proceedings of

2021 33rd Chinese Control and Decision Conference (CCDC); 22–24 May 2021; Kunming, China. pp. 4926–4931.

16. Hart P, Nilsson N, Raphael B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions

on Systems Science and Cybernetics. 1968; 4(2): 100–107. doi: 10.1109/tssc.1968.300136.

17. Kuang H, Li Y, Zhang Y, et al. Improved A-star Algorithm based on Topological Maps for Indoor Mobile Robot Path

Planning. In: Proceedings of 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC);

4–6 March 2022; Chongqing, China. pp. 1236–1240.

18. Sun T, Wang T, Sun P. Mobile Robot Dynamic Path Planning Based on Improved A* Algorithm. In: Proceedings of 2021

3rd International Conference on Robotics and Computer Vision (ICRCV); Beijing, China. pp. 24–29.

19. Şahın Hİ, Kavsaoğlu AR. Indoor Path Finding and Simulation for Smart Wheelchairs. In: Proceedings of 2021 29th Signal

Processing and Communications Applications Conference (SIU); Istanbul, Turkey. pp. 1–4.

20. Hu Z, Li J. Application of Maintaining the Shortest Path Method in the Game Map Path-Finding. In: Proceedings of 2010

International Conference on Computational Aspects of Social Networks; Taiyuan, China. pp. 737–740.

21. Kim OTT, Nguyen VD, Moon S, Hong CS. Finding realistic shortest path in road networks with lane changing and turn

restriction. In: Proceedings of the18th Asia-Pacific Network Operations and Management Symposium (APNOMS), 2016.

pp.1–4.

22. Zuo G, Zhang P, Qiao J. Path planning algorithm based on sub-region for agricultural robot. In: Proceedings of the 2nd

International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010). pp. 197–200.

23. Wang H, Qi X, Lou S, et al. An Efficient and Robust Improved A* Algorithm for Path Planning. Symmetry. 2021; 13(11):

2213. doi: 10.3390/sym13112213

24. Johsonbaugh R. Discrete Mathematics, 8th ed. Pearson; 2018.

25. Matlab. 9.4.0.813654 (R2018a). USA: The MathWorks Inc; 2018.

26. Shirkhodaie A, Rababaah H. “Multi-layered context impact modulation for enhanced focus of attention of situational

awareness in persistent surveillance systems”, Proc. SPIE 7710, Multisensor, Multisource Information Fusion: Architectures,

Algorithms, and Applications. 2010; 771009. doi: 10.1117/12.850795.

27. Rababaah A, As’ad A, Sultan A, et al. Development of Robotic Model to Support Intelligent Vehicles Behaviors. Global

Journal of Modeling and Computational Intelligence (GJMCI). 2021; 1(1): 50–59.

