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Abstract: We propose a new modification to the A* algorithm named AA* that 
significantly improves space and time complexities. In AA*’s forward pass, the node 
sets (open and closed) are not used, and only the local node neighborhood is saved to 
take the next move decision. AA* needs a backward pass to bridge and correct gaps 
and bad decisions made in the forward pass. The work of the backward pass is far less 
than that of the forward pass, as most of the task has been done. It is shown via 
empirical experimental work that our proposed AA* algorithm is superior to the 
classical A* algorithm in the typical three metrics: running time, number of probed 
nodes, and length of path. Furthermore, our experimental work showed that AA* is 
suboptimal in terms of length of path compared to the original Dijkstra’s algorithm 
with an accuracy of 96.95%. 

Keywords: A* path-finding algorithm; new modification to A*; mobile robotics; graph 

algorithms; grid-based path finding 

1. Introduction 

Path planning algorithm (PPA) is an essential operation in a number of real-world 
applications, including games, mobile robotics, unmanned aerial vehicles (UAVs), 
robotic arms, geographical maps, computer networks, sensor networks, resource 
allocation planning, smart vehicles, etc. [1,2]. The primary objective of PPA is to find 
the optimal path between source and destination nodes in an environment of nodes 
represented as a graph. Despite the number of algorithms of PPA that exist in the 
literature, most of them stem from Dijkstra’s original algorithm [3]. Although 
Dijkstra’s algorithm guarantees a globally optimal shortest distance between a source 
and a destination, it can be intensive in space and time. PPA has been studied for 
decades, and many solutions, including Dijkstra’s, have been proposed. Examples of 
these solutions include classical Dijkstra’s algorithm, A* path finding, ant colony, 
support vector machines, genetic algorithms, rapid random trees (RRT), local GPS, 
fuzzy logic, artificial potential fields, image processing, and sensor networks [2,4–15]. 

A typical environment of a path planning problem is depicted in Figure 1. It can 
be observed that the environment consists of a number of elements. It includes an agent 
that may be a robot, a vehicle, a drone, etc. This agent exists in this environment and 
is required to navigate through it from a source location to a destination location. This 
traversal is due to tasks that need to be accomplished by the agent in response to an 
event, command, etc. Also, the environment includes a set of obstacles that blocks the 
way of the agent. In our context, these obstacles are assumed to be static. The starting 
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and the target locations are known to the agent. Finally, the entire map of the 
environment is known to the agent.  

 
Figure 1. Typical environment of path planning problem. 

Since the invention of Dijkstra’s algorithm, many attempts have been proposed 
to improve its performance. The most popular algorithm that was proposed to improve 
the time and space complexity of Dijkstra’s algorithm is the A* algorithm [16]. The 
improvement that A* made on the original Dijkstra’s algorithm is the addition of a 
heuristic function that significantly pruned the useless paths to consider in the search 
space. In the technical background, there will be a more detailed and concrete 
discussion on how these algorithms work and what our proposed improvement is.  

2. Closely related literature 

The work presented a proposed method to improve the efficiency of the A* 
algorithm based on topological maps [17]. The paper used 2D lidar to construct the 
map of the environment. Furthermore, a depth camera was used to detect objects in 
the scene. The authors reported that their experimental work showed that the proposed 
method is reliable and more efficient than the original A* algorithm. A path planning 
technique for unmanned ships was presented by [15]. The authors assumed a known 
map of the environment. The authors compared the classical Dijkstra algorithm with 
the ant colony algorithm and concluded that their method was able to improve the 
efficiency of the path planning problem. The work of [7]. proposed a method to 
improve the A* planning algorithm for robot path planning. The authors provided a 
simulated experimental work that demonstrated that their proposed method is effective 
to produce better results than the classical A* algorithm. An improved version of the 
A* algorithm was used in the work of [14] for service robot path planning in 
restaurants. The authors reported that their method was able to avoid crowded channels 
and improved the effectiveness of the classical A* algorithm. Genetic algorithms (GA) 
were used in the work of [8] to improve the efficiency of the A* algorithm for UAVs. 
The authors used simulated experiments to validate their proposed method and found 
that it is reliable and efficient. An improved version of A* based on the dynamic 
window approach was proposed by [18]. The proposed method eliminated redundant 
path nodes, and the simulated experimental work demonstrated its effectiveness and 
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efficiency. A smart wheelchair system was enabled with a path finding algorithm 
based on the A* algorithm by [19]. The authors validated the proposed system using 
a simulated experimental work and found that the method is reliable. The work of [20] 
provided a solution for the deadlock problem in the A* algorithm when the graph is 
disconnected. The authors used picture matching and the A* to detect a deadlock 
scenario. An image processing technique for robot path finding was proposed [5]. The 
authors reported that their method is more effective and more efficient than current 
methods, as it exploits the visibility of the entire map rather than physically probing 
possible paths and backtracking. The work in [21] argued that many path finding 
algorithms are not sufficient for real-world scenarios of traffic road maps. The authors 
proposed more restrictions such as time duration, intersections, and lane changes. It 
was reported that via simulation experimental work, the proposed method was 
effective and reliable. A depth-first search and sub-region path planning method was 
introduced by [22]. The main improvement of the new method was to reduce the 
excessive number of turns in the paths of agricultural robots. The authors used 
simulated experimental work to validate their proposed method and found it to be 
effective. The work in [23] proposed an improvement on the A* algorithm from 
different aspects, including a bi-directional search and turn smoothing. The simulated 
and real-world experimental work showed that the proposed method is effective and 
efficient.  

3. Technical background 

In this section, the theory and fundamentals of relevant concepts and algorithms 
are presented. These include graphs, Dijkstra’s algorithm, the A* algorithm, and our 
proposed modified A* algorithm. 

The graph modeling of the problem of path finding is depicted in Figure 2. It can 
be observed that the graph is an undirected (bidirectional) graph and consists of a set 
of nodes, weighted undirected edges, a source node, and a destination node. Although 
graphs can be directed, our investigation will consider the less restrictive set of 
undirected graphs. This is because undirected graphs represent real-world scenarios 
more closely. 

 
Figure 2. Graph modeling of the path finding algorithm. 
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A graph can be mathematically defined as a finite set of vertexes, a finite set of 
edges, each of which has a weight, and an incidence function that defines the 
connectivity among all vertexes. This concept is expressed in Equation (1). 

𝐺 = (𝑉, 𝐸, 𝑊) (1) 

3.1. Dijkstra shortest path algorithm 

A path in a graph is defined as a finite sequence of distinct vertexes connecting a 
source vertex to a destination vertex [24]. This definition is given in Equation (2).  

𝑃(𝑣ଵ, 𝑣) = (𝑣ଵ, 𝑣ଶ, . . . , 𝑣ିଵ, 𝑣) (2) 

In a given graph, there are a finite number of possible paths from a source to a 
destination. The shortest path finding problem is interested in searching for the shortest 
path in this finite set of paths. Dijkstra’s algorithm defines a cost function g(x) based 
on the weight of the edge. This cost function is the basis for finding the next vertex to 
expand locally and eventually finding the best sequence of edges that forms the 
optimal path. The A* algorithm adds a heuristic function that improves both time and 
space complexities of the original Dijkstra’s algorithm. The cost function of the A* 
algorithm is defined in Equation (3).  

𝑓(𝑣) = 𝑔(𝑣) + ℎ(𝑣) (3) 

where: 

 f(vi): the overall cost function.  

 g(vi): the cumulative weight from source to vi vertex. 

 h(vi): the heuristic cost from vi vertex to destination. 
Typical heuristic functions used in A* include: Euclidean distance, Manhattan 

distance and diagonal distance defined in Equations (4)–(6) respectively.  

𝑑௨(𝑣ଵ, 𝑣ଶ) = ට(𝑣௫
ଵ − 𝑣௫

ଶ)ଶ + (𝑣௬
ଵ − 𝑣௬

ଶ)ଶ (4) 

𝑑(𝑣ଵ, 𝑣ଶ) = |𝑣௫
ଵ − 𝑣௫

ଶ| + |𝑣௬
ଵ − 𝑣௬

ଶ| (5) 

𝑑ௗ(𝑣ଵ, 𝑣ଶ) = max (|𝑣௫
ଵ − 𝑣௫

ଶ|, |𝑣௬
ଵ − 𝑣௬

ଶ|) (6) 

In Equations (4)–(6), v1 is the current vertex and v2 is the destination vertex. 
Furthermore, in all cases, it is assumed that moving from one cell to another costs the 
same in any direction. This is the case for 2D grids, which we assume in our 
investigation. Equation (3) can be generalized to account for weighted heuristic cost. 
As it stands, the weight of g(x) and h(x) is assumed to have the same influence. If it is 
desirable, this influence may be weighted differently and will impact the effectiveness 
and efficiency of the outcomes of the A* algorithm. Therefore, Equitation (7) 
expresses this general concept of weighted cost function. 

𝑓(𝑣) = 𝑔(𝑣) + (1 − )ℎ(𝑣) (7) 

where: 

 : a weight factor [0, 1] 
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According to Equation (7), if a = 0, A* goes back to Dijkstra’s original algorithm. 
On the other hand, if a = 1, A* completely ignores the g(x) term and uses only the h(x) 
term. In the first scenario, A* is very slow but accurate, and in the second scenario, 
A* is very fast but inaccurate. We will show an empirical investigation of these 
scenarios in the experimental work section. 

The graph in Figure 2 represents the general case of any path finding 
environment. A special common case uses a grid-based layout. In this grid, the vertex 
space is broken down into cells where each cell is surrounded by an 8-cell 
neighborhood as shown in Figure 3. We label these neighbors as the set of the possible 
movement directions of (N “north”, NE “north-east”, E “east”, SE “south-east”, S 
“south”, SW “south-west”, W “west”, NW “north-west”).  

 
Figure 3. Neighborhood of a current cell “x” in a grid-based path finding 
environment. 

A typical grid-based environment is shown in Figure 4. It is to be observed that 
color codes are significant in this map, as every color indicates the type of cell, such 
as ground, obstacle, open, closed, path, etc. 

 
Figure 4. Typical grid-based environment for path finding algorithm. 
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Since the original Dijkstra’s and the A* algorithms are very similar and they have 
only one difference, that is, the heuristic function h(x), we provide one flowchart for 
A* that includes Dijkstra’s as well. The flowchart is depicted in Figure 5. 

 
Figure 5. The flowchart of Dijkstra’s algorithm for shortest path finding. 

3.2. Space and time complexity 

Our main focus in this study is to improve time and space complexities of the A* 
algorithm. As explained earlier, A* already improved the original Dijkstra’s algorithm 
by adding a heuristic function to eliminate useless path explorations. The upper bound 
of Dijkstra’s algorithm is given in Equation (8), assuming the use of a min-heap data 
structure.  

𝑇(𝐸, 𝑉) = 𝑂((𝐸 + 𝑉)𝑙𝑜𝑔𝑉) (8) 

where: 

 T: time complexity. 

 E: number of edges in the graph. 

 V: number of vertexes in the graph. 
The complexity of A* algorithm is given in Equation (9). 
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𝑇(𝐸, 𝑉) = 𝑂(𝑏ௗ) (9) 

where: 

 b: number of expanded vertexes at each node. 

 d: number of vertexes in the found optimal path. 
We observe that there is an opportunity to improve both space and time 

complexities of the A* algorithm. For the space complexity, we do not use open and 
closed sets to store the current state of the algorithm. Instead, we sacrifice some 
accuracy for time efficiency. We will prove empirically that this sacrifice is not 
significant in the experimental work. On the other hand, we gain significantly on the 
running time efficiency. 

Our proposed algorithm consists of two passes, forward and backward passes. In 
the forward pass we concentrate on reaching the distention as fast as possible and using 
the number of nodes as low as possible. We recognize that, in the forward pass, the 
algorithm makes bad decisions and/or has a broken path sometimes. Therefore, we 
devised a backward pass to fix these two problems. The pseudocode of the two passes 
is given in Algorithms 1 and 2, respectively. 

Algorithm 1 Pseudo code of the forward pass of the proposed algorithm 

1: AA*Forward(map, src, dst) 

2: while (src.loc NE dst.loc) 

3:  lst_nbr = get_neighbors(src_loc) 

4:  for_each(cell in lst_nbr ) 

5:   if cell EQ obstacle 

6:    g(x) =  

7:   Else 

8:    if cell  {NW, NE, SW, SE} 

9:     g(x) = g(x) + 1.4142 

10:    End 

11:   End 

12:  End 

13:  h(x) = Euclidian(x, dst) 

14:  f(x) = g(x) + h(x) 

15:  min_x = min(lst_nbr, f(x)) 

16:  if |min_x| > 1 

17:   x = min(min_x, g(x)) 

18:  Else 

19:   x = min_x[1] 

20:  End 

21:  map(x) = src_color 

22:  map(src_color) = path_color 

23:  AA*Backward(map, dst, src) 
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Algorithm 2 Pseudo code of the backward pass of the proposed algorithm 

1: AA*Backward (map, src, dst) 

2: while (src.loc NE dst.loc) 

3:  lst_nbr = get_neighbors(src_loc) 

4:  for_each(cell in lst_nbr ) 

5:   if cell EQ obstacle OR has new_path_color 

6:    g(x) =  

7   Else 

8    if cell  {NW, NE, SW, SE} 

9:     g(x) = g(x) + 1.4142 

10:    Else 

11:     g(x) = g(x) + 1 

12:    End 

13:    If (cell == path_color) 

14:     g(x) = 0.1 * g(x) 

15:    Else 

16:     g(x) = 0.5 * g(x) 

17:   End 

18:   h(x) = Euclidian(x, dst) 

19:   f(x) = g(x) + h(x) 

20:  End 

21:  min_x = min(lst, f(x) ) 

22:  if |min_x| > 1 

23:   x = min(min_x, g(x)) 

24:  Else 

25:   x = min_x[1] 

26:  End 

27:  map(x) = new_path_color 

To demonstrate how the AA* algorithm works, show the forward and backward 
passes in Figure 6. Looking carefully at the forward pass, we can observe that AA* 
reached the target location but with a broken path, as the number of red-highlighted 
pieces of the path is visible. This is the role of the forward pass. The backward pass 
kicks in right after the forward pass has finished at the destination node. The role of 
the backward pass is to bridge these pieces together, keeping in mind the same 
heuristic used in the forward pass. The work of the backward pass is easier since most 
of the work has been done. In Lines 4–15 of the Backward pass, it gives preference to 
the already marked path cells in the Forward pass. Furthermore, it favors the explored 
cells over ground cells in case the cell was not already marked. Also, the backward 
pass forbids following a cell if it is an obstacle or already bridged. 
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(a) (b) 

Figure 6. (a) Sample of AA*Forward pass; (b) AA*Backward pass. 

4. Experimental work 

In this section, we present a simulator that we created to conduct our experiments, 
results and observations on the experiments and a discussion on the results. 

4.1. Simulator 

  
(a) (b) 

Figure 7. Sample of (a) simple environment; (b) complex environment. 

To be able to conduct our experimental work, we created a 2D simulator using 
[25]. The simulator was effective and helpful to experiment with different parameters 
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and visualize the details of path finding algorithms, namely Dijkstra’s, A*, and AA*. 
A sample view of the simulator can be seen in Figure 4, and it will be shown in several 
other figures below in the experiments subsection. Our simulator is different from 
others in the literature because it can automatically generate an environment with 
random shapes of obstacles that resembles real-world structures or buildings. The 
number and size of these obstacles can be set by the user so the user may test simple 
to challenging environments. An example of the two scenarios is shown in Figure 7. 
Other simulation environments can be found in the work of [26,27]. 

4.2. Experiments 

Our experiments were performed in two stages. The first stage addressed 

Equation (7) as the weight factor  was graduated between 0–1 in 0.01 increments 

using 5 different environments shown in Figure 8. 

    
(a) (b) (c) (d) 

Figure 8. Used environments in stage 1 of the experimental work. 

In each experiment we performed, three performance metrics were measured as 
follows: execution time of the algorithm, number of probed cells, and length of the 
found path. Figures 9–13 show the results of 500 experiments using 5 different 
complex environments shown earlier in Figure 8. 

   
(a) (b) (c) 

Figure 9. Experimental results of 1st environment: running time, number of probed cells and length of found path. 
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(a) (b) (c) 

Figure 10. Experimental results of 2st environment: running time, number of probed cells and length of found path. 

   
(a) (b) (c) 

Figure 11. Experimental results of 3st environment: running time, number of probed cells and length of found path. 

   
(a) (b) (c) 

Figure 12. Experimental results of 4st environment: running time, number of probed cells and length of found path. 



Computer and Telecommunication Engineering 2024, 2(3), 2504  

12 

   
(a) (b) (c) 

Figure 13. Experimental results of 5st environment: running time, number of probed cells and length of found path. 

The second stage of our experimental work addressed our newly proposed AA* 
algorithm, which improves the performance of the A* algorithm. We conducted 500 
experiments to investigate the performance of our AA* compared to A*. Figures 14–
17 show all the results of the aforementioned metrics, and Tables 1 and 2 aggregate 
these results as the mean and the standard deviation for more convenient comparison. 

Furthermore, the AA* algorithm was tested using challenging environments by 
simulating 2500 experiments to see the success/failure rate. A sample experiment is 
shown in Figure 12, and the results of all 2500 experiences are plotted in Figure 14. 
The results are further discussed in the next section of the discussion of results.  

 
Figure 14. Testing AA* for success/failure in challenging environments: 0 = success, 1 = failure. 
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Figure 15. A*0, A*1 and AA* compared based on running time. 

 
Figure 16. A*0, A*1 and AA* compared based on number of probed cells. 

 
Figure 17. A*0, A*1 and AA* compared based on length of path. 
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Table 1. Summary of mean results in Figures 14–16. 

Algorithm Running time (sec) Number of probed cells (each) Length of path (each) 

A*0 7.2230 8448 48 

A*1 0.4200 1339 52 

AA* 0.0016 1059 49 

Table 2. Summary of standard deviation results in Figures 14–16. 

Algorithm Running time (sec) Number of probed cells (each) Length of path (each) 

A*0 3.058 3055.8 13.89 

A*1 0.406 688.5 18.91 

AA* 0.003 1079.6 19.00 

4.3. Discussion of results 

In this section, we discuss our observations on the results of all conducted 
experimental work and attempt to explain our findings. 
1) In the weighted cost A* experiments, all results are consistent with our 

expectations. This can be seen in Figures 9–13. 
2) For the A* runtime results, all results in Figures 9–13 showed that running time 

increases by increasing the value of a. 
3) For the A* number of cells results, all results in Figures 9–13 showed that the 

number of probed cells increases by increasing the value of a. 
4) For the A* length of path results, all results in Figures 9–13 showed that the 

length of the path decreases by increasing the value of a. 
5) The observation in 4 indicates that although Dijkstra’s algorithm (A*0) is 

inefficient in terms of running time and number of probed cells, it always 
produces the shortest path. 

6) In Table 1, the mean summary of Figures 9–13 indicates that our proposed 
algorithm AA* is superior in running time as it scored a mean running time of 
0.0016 sec, which is 262.5% faster than A*. 

7) In Table 1, the mean summary of Figures 9–13 indicates that our proposed 
algorithm AA* is superior in number of probed cells, as it scored a mean number 
of probed cells of 1059 cells, which is 26.44% fewer probed cells than A*. 

8) In Table 1, the mean summary of Figures 9–13 indicates that our proposed 
algorithm AA* is superior in length of path, as it scored a mean length of path of 
1059 cells, which is 6.12% fewer cells in the path than A*. Furthermore, this 
metric indicates that our AA* algorithm is suboptimal compared to the A*0 
(original Dijkstra) as the length of the path is longer than the optimal found in 
A*0. 

9) In Table 1, the standard deviation summary of Figures 9–13 indicates that our 
proposed algorithm AA* is the most stable in running time, as it has the lowest 
scatter compared to A*0 and A*1. In fact, the STD of AA* is 135.33% better 
than that of A*. 

10) Our experimental work provides empirical evidence that the proposed algorithm 
AA* is effective by achieving a sub-optimal path compared to A*0 but better 
than the A*1 algorithm. Furthermore, besides demonstrating a competitive length 
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of path, the experimental work provided evidence that our algorithm is superior 
in running time as well. 

11) According to the histogram in Figure 18a, our calculations showed that the A*1 
algorithm has a length of path accuracy of 91.19% compared to the optimal path 
of the original Dijkstra’s A*0 algorithm. 

12) According to the histogram in Figure 18b, our calculations showed that the AA* 
algorithm has a length of path accuracy of 96.95% compared to the optimal path 
of the original Dijkstra’s A*0 algorithm. 

13) It is to be reported that we observed that our proposed algorithm occasionally 
fails to find a path in very complex obstacle settings while A*0 and A*1 never 
fail. That is the only disadvantage we could report based on our extensive 
experimental validation. An example of this scenario is demonstrated in Figure 
19. 

  
(a) (b) 

Figure 18. Length of path ration comparison. (a) A*0/A*1; (b) A*0/AA*. 

 
Figure 19. Example of occasional failure of the AA* algorithm in a very complex 
environment. 
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14) Further investigation of point# 13 above, Figure 14 shows extensive testing of 
this test using 2500 experiments with various challenging environments as shown 
Figure 19 and the results showed that the failure rate was 21/2500 = 0.0084 = 
0.084%. Therefore, the success rate was 99.16% which undeniably remarkable. 

5. Conclusion 

We have presented a new proposed modification to the A* path finding 
algorithm, and we have demonstrated the effectiveness and efficiency. The new 
algorithm is named AA*. Two passes are needed to accomplish AA* objectives. In 
the forward pass, we employ the strategy of A* without the space and effort spent on 
the two traditional sets (open and closed) needed to maintain the state of the A* 
algorithm. The AA* algorithm, by not maintaining the state, suffers some bad 
decisions and broken paths. These problems are solved in the backward pass. The role 
of the backward pass is to bridge the broken pieces of the generated, possibly 
incomplete path and fix the bad decisions made in the forward pass. To validate our 
proposed modification, a simulator was created that turned out to be effective and 
helpful for this domain. A total of 500 simulated experiments were conducted, and 
their results showed that the new algorithm AA* is superior to the A* algorithm in the 
three typical metrics of running time, number of probed cells, and length of path with 
an accuracy of 96.95% compared to the optimal path of the original Dijkstra’s 
algorithm. Furthermore, we ran another 500 simulated experiments to investigate the 
influence of the weight factor of the heuristic function and reported interesting results 
and observations. One minor drawback of our proposed algorithm is the occasional 
failure to find the path in a very complex setting of obstacles, but this finding was 
verified to be insignificant as the success rate was outstanding at 99.16%.  

Conflict of interest: The author declares no conflict of interest. 
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